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In seismic waveform inversion, the goal is to estimate subsurface parameters, m, from a collection of data {di}ki=1

from various sources, indexed by i. Here, a single datum di ∈ Rn represents a collection of n measurements, for
example recorded by various stations or geophones. These recordings are modeled as noisy versions of the true
signal, i.e.,

di = Fi(m) + ni,

where Fi(m) is the (deterministic) forward operator, parametrized by m and ni is a (stochastic) noise term. If
these noise terms are Gaussian with mean zero and known covariance C (i.e., ni ∼ N (0, C)) we arrive at the well-
known non-linear least-squares formulation. The problem is that the covariance of the noise is typically not known
a-priori. If there is enough data, i.e. k > n, we can formulate an extended problem that allows for estimation of
both C and m

min
m,C

log (|C|) + 1

n

k∑
i=1

‖Fi(m)− di‖2C−1 , (1)

where ‖r‖2A = rTAr is a weighted norm. The minimization over C has a closed-form solution

Ĉ =
1

n

k∑
i=1

rir
T
i ,

where ri = Fi(m) − di, allowing one to design an efficient alternating optimization algorithm for small-scale
problems. Such an approach is based on a singular-value-decomposition (SVD) of the residual matrix R =
[r1, r2, . . . , rk] = USV T , allowing one to express the covariance matrix as C = n−1RRT = US2UT . This,
in turn, allows us to compute its inverse and determinant needed for the evaluation of the objective in (1) and its
derivatives and apply a standard gradient-based method to solve for m.
For large-scale problems, however, it is not feasible to compute a full SVD of the residual matrix. Instead, we
propose to first reduce the dimensionality of the residual matrix by compressing it with a random (Gaussian)
matrix W ∈ Rk×k′ with k′ � k to get R̃ = RW . Note that we can perform such a compression in practice at
the cost of only k′ applications of the forward model if the principle of superposition holds. If we normalize the
random matrix we can approximate the covariance matrix as Ĉ ≈ n−1R̃R̃T . This is an unbiased approximation,
i.e., E(R̃R̃T ) = nC, where E denotes expectation over W . The compressed residual matrix is much smaller,
allowing us to compute a (truncated) SVD and proceed with the algorithm as stated above. Preliminary results are
shown in figure 1.
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Figure 1. The Gaussian noise is generated according to the covariance matrix (left), inversion of the data for with constant
covariance leads to a very poor reconstruction, while estimating the covariance on-the-fly gives a reasonable result (middle).
The convergence plot (right) shows that the stochastic approach (k′ = 10) converges much faster than the naive approach
(k = 200), leading to an order of magnitude in computational savings.


