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Stochastic models can be developed to perform ensemble forecasts of geophysical fluid dynamical systems to
more efficiently handle subgrid parametrizations. As numerical simulations do not usually resolve all temporal
scales, solutions can be found by decomposing the velocity u into a smooth resolved component, w, and an
unresolved one, σḂ , uncorrelated in time and inhomogeneous in space. In turn, this new point of view changes
the usual interpretation of transport and fundamental conservation laws (mass, momentum and 1st principle).
Indeed, following a stochastic version of the Reynolds transport theorem ([3]), three terms naturally emerge: a
multiplicative noise, an anisotropic and inhomogeneous diffusion, and a drift correction. For instance, neglecting
diabatic effects implies the conservation of the temperature T along the flow as : DT

Dt = 0, with the material
derivative D

Dt , now understood in the stochastic sense:

DT

Dt
dt = DtT = dtT + (w∗dt+ σdBt) · ∇T −∇ ·

(a
2
∇T

)
dt, with a = σσT and w∗ = w − 1

2
(∇ · a)T . (1)

As such, the rigorous derivation of this model relates the random forcing to the subgrid parametrization. This fur-
ther ensures important properties such as energy conservation

(
d
dt

∫
Rd T

2 = 0
)

and also simplifies the derivation
of ensemble forecasts in defining a clear mathematical framework.
Using this new framework, stochastic versions of geophysical models have been derived, namely: Navier-Stokes
equations in a rotating frame, the Boussinesq approximation, Quasi-Geostrophy (QG) and Surface Quasi-Geostrophy
(SQG). Depending on the amount of randomness, the QG approximation (Ro � 1 and Ro � Bu) can lead to two
different models. With moderate uncertainty, the horizontal transport of the Potential Vorticity (PV), Q, in the
interior of the fluid, has 3 sources terms. For homogeneous turbulence, two of them, disappear. The remaining
term, a noise uncorrelated in time, encodes the interactions between the resolved and the unresolved velocity gra-
dient tensors. The ensuing SQG model is then derived assuming a zero PV in the interior, as in the deterministic
case ([1]). Yet, the buoyancy transport at the surface of the fluid has to be understood in the stochastic sense (1).
Increasing to strong uncertainty, the QG approximation further leads to a vanishing PV in the interior. As such, a
classical SQG relationship remains. However, for that case, an ageostrophic component appears, contributing to
intensify asymmetries between cyclones and anticyclones, as in the SQG+ model ([2]). Frontogenesis occurs on
the cold side of fronts, on uncertain locations, and frontolysis smooths the warm side of fronts.
Figure 1 shows the simulation of an initially symmetric flow with the deterministic SQG model and our stochastic
version. As obtained, the flow topology is changed by the noise and the divergent component, and the symmetry
breaks more rapidly. Larger the uncertainty, faster the symmetry is broken. Simulating an ensemble of realizations
then enables to track the different possible topologies and all the bifurcations of the system.
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Figure 1. Buoyancy (m.s−2) at the initial state and after 30 days of advection for (from left to right) the classical SQG model,
the SQG model with moderate uncertainty and with strong uncertainty. The turbulence is assumed to be homogeneous. Its
energy is specified by the diffusion coefficient aH

2
= 9 m2.s−1 for moderate uncertainty and aH

2
= 103 m2.s−1 for strong

uncertainty. The size of the domain is 128× 128 and the boundaries are doubly periodic.
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