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In 1958 Jeffreys proposed a power law of creep, generalizing the logarithmic law earlier introduced by Lomnitz,
to broaden the geophysical applications to fluid-like materials including igneous rocks. We revisit the Jeffreys-
Lomnitz law of creep by allowing its power law exponent α, usually limited to the range 0 ≤ α ≤ 1 to all negative
values so also solid-like viscoelastic materials are included in the extended law. This approach is consistent with
the linear theory of viscoelasticity because the creep function still remains a Bernstein function, that is positive
with a completely monotone derivative, with a related spectrum of retardation times. Indeed, in the extended
Jeffrey-Lomnitz crrep law the complete range α ≤ 1 (rather than 0 ≤ α ≤ 1) yields a continuous transition from
a Hooke elastic solid with no creep (α→−∞) to a Maxwell fluid with linear creep (α=1) passing through the
Lomnitz viscoelastic body with logarithmic creep (α= 0), which separates solid-like from fluid-like behaviors. It
is convenient to separately consider four cases:

t ≥ 0 , Ψ(t) =



t/τ0 , α = 1 ,

(1 + t/τ0)
α − 1

α
, 0 < α < 1 ,

log(1 + t/τ0) , α = 0 ,

1− (1 + t/τ0)
−|α|

|α|
α < 0 .

where we have considered the dimensionless creep function Ψ versus a dimensionless time t/τ0. The behaviour
of Ψ(t) is illustrated in the Figures below, for some values of α in the range −2 ≤ α ≤ 1, adopting a logarithmic
time scale and a linear time scale. Here, geophysical applications of the extended Jeffreys-Lomnitz creep in the
realm of global models of glacial isostatic deformations will be discussed.
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