DIRECT NUMERICAL SIMULATIONS OF AEOLIAN SAND RIPPLES

O. Durán^{*,*}, B. Andreotti^{*} & P. Claudin^{*}

Laboratoire de Physique et Mécanique des Milieux Hétérogènes,
PMMH UMR 7636 ESPCI – CNRS – UPD – UPMC, 10 rue Vauquelin, 75005, Paris, France.
** MARUM – Center for Marine Environmental Research, Bremen University, Germany.

Key words Aeolian transport. Wind ripples. Resonance

Aeolian ripples form regular patterns at the surface of sand sheets and dunes, both on Earth and Mars. Their emergence at a wavelength much larger than the grain size was unexplained. Here we report direct numerical simulations of grains interacting with a wind flow that are able to reproduce the spontaneous growth of ripples with an initial wavelength and a propagation velocity linearly increasing with the wind speed. The instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement towards the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths.

Figure 1. Ripples emerging from a flat bed in a simulation $(u_*/u_{th} = 3)$. (a) Large-scale view of the system composed of 45000 grains in a quasi two-dimensional xyz box of respective dimensions $3400 d \times 1 d \times 1000 d$). Periodic boundary conditions are used in the x (wind) direction. The results presented here are obtained for a density ratio $\rho_p/\rho_f = 500$, a grain Reynolds number $\mathcal{R} = d/\nu \sqrt{(\rho_p/\rho_f - 1)gd} = 22$ (ν is the air kinematic viscosity) and shear velocities in the range $u_*/u_{\text{th}} = 1-5$. The colored background codes for the wind velocity, see wind profile (left). (b) Close-up view at the scale of the ripple wavelength, featuring saltation trajectories, with hop-height between 15 and 30d. The average resonant trajectory is shown in red. (c) Zoom at the level of the interfacial. A collision between a salton (orange) and a repton (green) is sketched.

References

 O. Durán, P. Claudin, B. Andreotti, Direct numerical simulations of aeolian sand ripples, Proc. Natl. Acad. Sci. USA 111, 15665–15668 (2014).