DIRECT NUMERICAL SIMULATIONS OF AEOLIAN SAND RIPPLES

O. Durán*, B. Andreotti* & P. Claudin*
* Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH UMR 7636 ESPCI – CNRS – UPD – UPMC, 10 rue Vauquelin, 75005, Paris, France.
* MARUM – Center for Marine Environmental Research, Bremen University, Germany.

Key words: Aeolian transport. Wind ripples. Resonance

Aeolian ripples form regular patterns at the surface of sand sheets and dunes, both on Earth and Mars. Their emergence at a wavelength much larger than the grain size was unexplained. Here we report direct numerical simulations of grains interacting with a wind flow that are able to reproduce the spontaneous growth of ripples with an initial wavelength and a propagation velocity linearly increasing with the wind speed. The instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement towards the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths.

Figure 1. Ripples emerging from a flat bed in a simulation \(\frac{u_*/u_{th}}{= 3} \). (a) Large-scale view of the system composed of 45000 grains in a quasi two-dimensional \(xyz \) box of respective dimensions \(3400 \, d \times 1 \, d \times 1000 \, d \). Periodic boundary conditions are used in the \(x \) (wind) direction. The results presented here are obtained for a density ratio \(\rho_p/\rho_f = 500 \), a grain Reynolds number \(R = d/\nu \sqrt{(\rho_p/\rho_f - 1)gd} = 22 \) (\(\nu \) is the air kinematic viscosity) and shear velocities in the range \(u_*/u_{th} \) = 1–5. The colored background codes for the wind velocity, see wind profile (left). (b) Close-up view at the scale of the ripple wavelength, featuring saltation trajectories, with hop-height between 15 and 30\(d \). The average resonant trajectory is shown in red. (c) Zoom at the level of the interfacial. A collision between a salton (orange) and a repton (green) is sketched.

References