THE FAULT DAMAGE ZONE AS BARCODE OF EARTHQUAKES

C. Schrank^{1,2}, <u>M. Veveakis^{3,4}</u>, T. Poulet^{4,3} & K. Regenauer-Lieb⁴ ¹QUT, Brisbane, Australia; ²UWA, Perth, Australia, ³UNSW, Sydney, Australia; ⁴CSIRO, Sydney, Australia

Key words fault zone, damage zone, cnoidal waves, plastic P-waves.

The spatial footprint of a brittle fault is usually dominated by a wide halo of deformation bands and fractures surrounding a narrow, highly deformed fault core [1, Fig. 1]. This diffuse damage zone relates to the deformation history of a fault, including its seismicity, and has a significant impact on flow and mechanical properties of faulted rock [2, 3]. Here, we propose a new mechanical model for damage-zone formation. It is deduced from a novel mathematical theory postulating fundamental material instabilities in solids associated with volumetric deformation due to solitary elastoviscoplastic Pwaves: cnoidal waves [4]. We show that transient cnoidal waves triggered by fault slip events can explain the typical distribution and extent of deformation bands and fractures within natural fault damage zones (Fig. 1). As a result, the damage zone can be considered as a barcode of earthquakes and inverted for earthquake overpressure and material properties of the host rock. Hence, cnoidal-wave theory may open a new chapter for predicting seismicity, material and geometrical properties as well as the location of brittle faults.

Figure 1. Left: Photograph of a normal fault (white arrow) cutting sand-, silt- and mudstones (Castlepoint, New Zealand). Its slip surface contains entrained mudstone and accommodated a vertical displacement of \sim 1.75 m. The fault exhibits a marked damage zone where deformation-band spacing increases non-linearly away from the core. Right: Plot of distance of deformation bands normal to the fault versus cumulative number of bands for the natural case and our best-fit model using transient cnoidal waves. The spatial statistics of the natural data were computed along 250 fault-normal scan lines. The diamonds indicate the mean distance of the nth band in nature. The vertical bars denote the lower and upper limit of the related distance distribution.

References

Caine, J. S., Evans, J. P. & Forster, C. B. Fault zone architecture and permeability structure. *Geology* 24, 1025-1028 (1996).
Okubo, C. H. & Schultz, R. A. Evolution of damage zone geometry and intensity in porous sandstone: insight gained from strain energy density. *Journal of the Geological Society* 162, 939-949, doi:10.1144/0016-764904-148 (2005).

[3] Xu, S. & Ben-Zion, Y. Numerical and theoretical analyses of in-plane dynamic rupture on a frictional interface and off-fault yielding patterns at different scales. *Geophysical Journal International* **193**, 304-320 (2013).

[4] Veveakis, E. & Regenauer-Lieb, K. Cnoidal waves in solids. *Journal of the Mechanics and Physics of Solids* **78**, 231-248, doi:http://dx.doi.org/10.1016/j.jmps.2015.02.010 (2015).