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DYNAMICS OF FRICTIONAL SLIP LOCALISATION
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An explanation is proposed of the origins of travelling waves of stick and slip that have been observed between
frictional sliding surfaces [4, 1, 3]. Such waves, at very different lengthscales, are thought to underlie both earth-
quakes’ source and the performance of mechanical brakes and dampers. An idealised situation is studied of a
long thin elastic plate, subject to uniform shear stress µ̄ and frictional interaction with a rigid flat surface. Seeking
deformation that is uniform in the transverse direction, a nonlinear wave equation is constructed under a long-wave
assumption. Appearing from global homoclinic or heteroclinic bifurcations and under non-monotonic rate-and-
state friction [9, 7, 8] a rich variety of solution types is discovered at intermediate shear stress between pure uniform
stick and uniform slip, including: periodic stick-slip wave-trains, isolated pulses of stick or slip and detachment
or attachment fronts. Careful consideration of the choice of the friction model and interfacial state kinetics is
necessary to capture the full richness of wave types. See Fig. 1. This plethora of behaviours strongly depends
on the analytical details of the friction model and may shed new light on the dynamics of earthquake ruptures, in
particular with respect to the recent field evidence that suggests seismic slip localizes along a fault patch that is
partially locked during the interseismic period [10]. Might a locked fault patch be a slow stick pulse? Finally we
emphasise that this study shows that these slip patterns can exist over a wide range of speeds of travelling wave.
This may explain the large variability of earthquake duration and frequency spectrum [6, 5]. Future work will
study the stability of these localized slip structures and their physical selection.
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Figure 1: The diversity of travelling localised frictional slip patterns computed from a non-monotonic friction model [8]. (a) Bifurcation
diagram showing the growth of wave-trains from a Hopf bifurcation (�), promoted by velocity-weakening friction, leading to the homoclinic
orbit (•) of slip pulse (b) reminiscent of the pulses described by Heaton [4]. Such slip pulses are anchored at the equilibrium saddle point
lying on the low-velocity-strengthening branch of the steady-state friction curve. (c) The existence of a high velocity strengthening branch
of the friction curve µss(v) also allows the existence of ‘stick pulse’ which corresponds to a narrow travelling ‘stick’ zone. (d) Heteroclinic
orbits connecting the saddle equilibria lying on the low and high velocity-strengthening branches of µss correspond to travelling ‘detachment’
(similar to [3, 2]) or ‘attachment’ fronts promoting the slab acceleration or deceleration. The location of attachment fronts, which is difficult
to compute, is expected to follow very closely the slip pulse locus (homsl). (e) Phase diagram of travelling wave patterns: homoclinic
(pulses) and heteroclinic (fronts) connections exist on lines within the (V, µ̄) parameter space that delineate domains of generic travelling
fronts and wave-trains of different types. The precise topology of this bifurcation structure strongly depends on the mathematical details of the
friction model, in particular the state evolution equation. Nomenclature: loci of slip pulses (homsl), stick pulses (homst), detachment fronts
(hetd), Hopf bifurcation locus (hpf ); saddle-node bifurcation loci at the local extrema of friction (sn); Stick-slip wave-trains (WT). Generic
detachment (DF) and attachment (AF) fronts. Takens-Bogdanov bifurcation point (BT). By contrast the classic monotonic Dieterich-Ruina
laws [9] only predict wave trains of slip-pulse solutions in a window of the applied shear stress µ̄ that is exponentially narrow, see (f-g). Note
that the travelling waves are moving to the left in these examples. Similar solutions are expected for waves travelling to the right.
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